
MULTIPLE COMPARISON TESTS FOR CONTRASTS AMONG CORRELATED CORRELATION COEFFICIENTS 

Bradley E. Huitema, Western Michigan University 

An important use of tests of the equality of 

two correlated correlation coefficients has been 
pointed out by Campbell (1971) and Kenny (1975). 

They suggest that an appropriate method of ana- 

lyzing the nonequivalent groups pretest- posttest 
design is to compare the correlation between pre- 
test scores and a group membership dummy vari- 
able with the correlation between posttest 
scores and the dummy variable. Hence, the pre 

and post scores are X (predictor) variables and 
the dummy variable is Y. If the difference be- 
tween and ryx is significant, it is con- 

cluded that treatment effects exist. If more 
than two observation periods are involved (e.g., 

pre, post #1 and post #2) it is necessary to 
analyze the difference among three or more corre- 
lated correlation coefficients. 

It appears that multiple comparison tests 

for the case of correlated correlation coeffi- 
cients have not yet been suggested. The purpose 
of this paper is to propose three methods of 

dealing with several correlated correlations. 

Method A 

Method A is suggested for tests on all pair - 
wise comparisons. This method involves two 
stages: 

Stage I: Test the overall hypothesis 

4yx2 
= 

= fyxm 

(where f is the population correlation 
coefficient, y is the dependent variable 
and x, through x.,are the predictor vari- 
ables) using the generalization of Hotel - 
ling's well known test of the equality of 
two correlated correlation coefficients 
(Hotelling, 1940). If this test is signifi- 
cant, proceed to stage II. 

Stage II: Compute Hotelling's two predictor 
test for each pairwise contrast. 

Computation Procedure 

The computational formula required for 
Stage II tests is presented in several texts 
(e.g., McNemar, 1968; Walker and Lev, 1953) and 
will not be repeated here. The computational 
steps required for the m predictor generaliza- 
tion of Hotelling's two predictor test (i.e., 
Stage I) are provided below. 

Step 1 

Compute R , the intercorrelation matrix of 
all predictor variables. 

Step 3 

Computer , the column vector of correla- 
tions between the dependent variable and 
each predictor, i.e., 

rx y 

rxy rxty 

rxmy 

Step 4 

Compute the coefficient of multiple deter- 
mination 

Ste? 5 

Obtain the sum of the elements of 

Step 6 

Obtain cl, c2, .. cm, the sums of rows 1 

through m ofl . 

Step 7 

Compute the weights w1, w2, wm where 

ci 
wi 

The sum of the weights 1. The column vec- 
tor of weights is denoted w. 

Step 8 

Compute h where 

h = 
y 

Step 9 

Compute the product h2 
. 

Step 10 

Compute the F statistic using 

F= - /m -1 

(1 - xl,x2...xm ) /N -m -1 

The obtained F is evaluated with l,N -m 
where N is the total number of subjects and 
m is the number of predictor variables. 

Method B 

Step 2 
Method B is appropriate when there is inter - 

Compute R the inverse of R x . 

est in testing the m-1 control versus treatment 
correlations. Suppose rxly is the sample control 
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correlation and and are the sample 
treatment correlations. The -1 null hypotheses 
are 

Ho: = and 

Ho: = 

Hotelling's conventional two predictor formula 
is applied to each contrast. The obtained t 
statistics are not, however, evaluated using 
student's t distribution. Rather, each obtained 
t is evaluated using Dunnett's t statistic 
(Dunnett, 1955). The critical value is based on 
m and N -3 degrees of freedom. No preliminary 
(Stage I) test is required with this method. 

Method C 

Method C is most appropriate if a relatively 
large number of correlations are involved but 
the researcher has interest in making only a few 
planned comparisons. As with Method B, no pre- 
liminary test is employed. Hotelling's two 
predictor formula is employed for each planned 
contrast. The obtained t statistics are compared 
with the critical value of the Bonferroni t sta- 
tistic (Dunn, 1961) associated with C (the num- 
ber of planned contrasts) and N -3 degrees of 
freedom. 

Example 

X2 X3 Y Data: X1 

4 4 8 1 

6 1 

7 9 7 1 

6 7 7 1 

6 8 8 1 

8 7 7 1 

6 2 4 0 

5 3 5 0 

5 2 6 0 

5 1 5 0 

4 3 6 0 

5 2 7 0 

Method A 

Stage I 

The sample correlations are: 

rxly .45 

rx2y = .90 

= .71 

The overall test on the differences among 
these coefficients yields an obtained F 
value of 8.31. The critical value is 

F .05 2 8 - 4.46. Since Ho: 
is rejected we are entitled to proceed to 
Stage II. 

Stage II 
The t values associated with the three pair- 
wise contrasts are as follows 

Population 
Contrasts 

Sample 
Coefficients tobt 

fxly VS 

vs 
fx2y vs 

.45 vs .90 

.45 vs .71 

.90 vs .71 

3.37 

.97 

1.70 

Since the critical value is 2.262, we con- 
clude that the null hypothesis is 
retained for the other contrasts. 

Method C 

The critical values of the Bonferroni t 
statistic for one, two and three planned con- 
trasts are shown below along with the contrasts 
and obtained t values. 

Population Sample C=1 C=2 C=3 

Contrasts Coefficients tobt tB=t tB tB 

2.93 

2.93 

fxlyvs fx2Y .45 vs .90 

.45 vs .71 

3.37 

.97 

2.262 

2.262 

2.69 

2.69 

fx2yvs .90 vs .71 1.70 2.262 2.69 2.93 
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If all three pairwise contrasts are planned, the 
critical value is 2.93 and, as with Methods A and 
B, the Ho: fxly fx2y is rejected while 

Ho: fxly = 9x3y and Ho: are re- 
tained. 

When only two contrasts are planned, the critical 
value is 2.69. 

Discussion 

Methods A, B and C may be viewed as analogs 
to the Protected LSD, Dunnett and Dunn -Bonferroni 
procedures for multiple comparisons among means. 
Recent work by Carmer and Swanson (1973) and 
Bernhardson (1975) on the protected LSD procedure 
suggests that this two stage approach has two 
very desirable characteristics. The first is 
good control of Type I error and the second is 
high power. These characteristics should also be 
associated with Method A. Monte Carlo work is 
needed, however, to support this supposition. 

Method B, which is limited to m -1 control 
versus treatment contrasts, is simpler to compute 
than Method A. 

Method C requires the researcher to plan the 
contrasts of interest. If the number of planned 
contrasts relative to the total number of pair - 
wise contrasts is not small, Method A is more 
powerful. On the other hand, if a very large 
number of correlations are involved along with 
relatively few error d.f. Method C may be much 
more powerful if only a few contrasts are planned. 

It should be pointed out that the error.rate 
for these procedures is defined somewhat differ- 

ently in each case. Under Method A the error 
rate is experimentwise where the experiment is 



the whole collection of pairwise contrasts. 
Under Method B the error rate is also experiment - 
wise but the experiment is defined as the collec- 
tion of m-1 contrasts. The error rate under 
Method C is the Per Experiment error rate which 
is defined as the number of comparisons falsely 
declared significant over the total number of 
experiments. These are theoretical error rates 
and, unfortunately, it has not been demonstrated 
empirically that the rates for these tests are 
the same as the nominal rates. A possible fly 
in the ointment has just been published by Neill 
and Dunn (1975). They found that the two pre- 
dictor Hotelling test has unacceptably high 
empirical error rates. For .05 and N =10 
and 50, the empirical error rates were .18 and 
.19. For a(= .01 and N =10 and 50, the average 
empirical error rates were .13 and .14 (45 cases 
in each study). In contrast, Williams modifica- 
tion of Hotelling's test (which Dunn claims is 
essentially the same test Hotelling discarded 
before 1940 when he published his well -known 
test) maintains the empirical error rate very 
close to the nominal level. Neill and Dunn do 
not point out, however, that Hotelling's test 
was derived under the assumption of fixed values 
on the predictor variables whereas their simula- 
tion was carried out with trivariate normal dis- 
tributions. Whether or not this difference is 
sufficient to explain the unusually high error 
rates for Hotelling's test remains to be seen. 

The application suggested here (i.e., X 
variables random and Y fixed) meets neither the- 
assumptions of fixed predictor values nor multi - 
variate normality. Until this issue is inves- 
tigated a conservative approach is to substitute 
William's modification of Hotelling's test where 
Hotelling's conventional test has been suggested 
in Methods A, B and C. 

Under the more typical situation encountered 
in typical correlation studies the multivariate 
normal assumption is probably reasonable and 
William's modification should be substituted for 
Hotelling's conventional test in Stage II of 
Method A and in Methods B and C. 

In general, Method A is recommended for any 
number of pairwise comparisons unless computation 
is a problem. Method C is suggested for the 
situation in which Stage I of Method A presents 
computation problems or if comparisons are 
planned. 
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